sábado, 13 de agosto de 2011

Por que o forno de micro-ondas não aquece alguns objetos e por que não se devem colocar objetos metálicos nele?

O forno de micro-ondas, presente na maioria das residências, emite micro-ondas com frequência na casa de 2,5 gigahertz. A característica interessante desta faixa de frequência é que a radiação excita, de forma considerável, as moléculas assimétricas, como a da água, óleos e açúcares. Desta forma, quando o eletrodoméstico é utilizado para aquecer os alimentos, apenas estas moléculas aumentam sua energia interna, provocando um aumento de temperatura.
O material dos pratos e potes é, em sua maior parte, formado por moléculas de estrutura extremamente simétrica, por isso o aquecimento deles é muito pequeno. Mas quando colocamos um alimento em um prato para ser aquecido, este prato não está quente ao ser retirado do forno de micro-ondas? A resposta é sim, ele está. No entanto, as micro-ondas não são o motivo deste aquecimento, e sim o contato direto do prato com os alimentos aquecidos.
E por que não devemos colocar objetos metálicos no forno de micro-ondas?
Por dois motivos principais: primeiramente, porque superfícies de metal refletem as micro-ondas, causando uma espécie de blindagem que impede que as ondas atinjam as moléculas líquidas. A outra razão é que o campo elétrico presente no interior do forno provoca o surgimento de correntes elétricas nos metais, os quais acabam sendo carregados e aquecendo rapidamente. Assim, se houver algo como um pedaço de papel ou qualquer outra coisa que possa pegar fogo dentro do micro-ondas, pode ser ocasionado um incêndio.

Qual a velocidade da corrente elétrica?

Quando você aciona um interruptor que liga uma lâmpada, na verdade está apenas fazendo com que um circuito se feche. Neste instante, os elétrons livres, presentes na fiação da rede elétrica da sua casa, sofrerão a influência de um campo elétrico e começarão se movimentar. Esta é a corrente elétrica.
Mas você já se perguntou com que velocidade estas partículas infinitamente pequenas se movem, para que a lâmpada se ligue praticamente no momento em que é acionada?
O primeiro pensamento que vem à mente é de que os elétrons percorrem o segmento do condutor, entre o interruptor e a lâmpada, em uma ínfima fração de segundo, levando-nos a pensar que a velocidade de deslocamento destes elétrons é próxima à velocidade da luz.
Na verdade, este raciocínio induz a um grande erro.
Para chegarmos à resposta certa, devemos pensar que o fio condutor, que normalmente é de cobre, é formado por infinitos átomos, desde seu início até a sua extremidade mais distante.
Portanto, ao fecharmos o circuito, acionando o interruptor, estamos fazendo com que todos os elétrons livres se movimentem. Não necessariamente os elétrons que estão próximos a você são os que farão a lâmpada funcionar.
Surpreendentemente, a velocidade de cada elétron é realmente baixa, experimentalmente chega-se a resultados próximos a 1 cm/s, variando conforme o material do condutor e as características do local onde se encontra.
E se pensarmos que as redes no Brasil têm caráter alternado, com frequência de 60 Hz (ou seja, o sentido do movimento da corrente muda 120 vezes a cada segundo), provavelmente chegaremos à conclusão de que é possível que os elétrons livres que estão próximos a sua mão no momento em que você aciona um interruptor podem nunca chegar a atravessar todo o segmento de fio, a ponto de realmente chegarem à lâmpada a qual está ligado.

Por que o céu é azul?

Quando a luz passa através de um prisma, seu espectro é dividido em sete cores monocromáticas, eis que surge um arco-íris de cores. A atmosfera faz o mesmo papel do prisma, atuando onde os raios solares colidem com as moléculas de ar, água e poeira e são responsáveis pela dispersão do comprimento de onda azul da luz.
Quando percebemos a cor de um objeto, é porque ele refletiu ou dispersou, de forma difusa, o comprimento de onda associado à luz de uma determinada cor. Por exemplo, uma folha verde utiliza todas as cores do espectro para fazer a fotossíntese, exceto o verde, que é refletido.
Devido ao seu pequeno tamanho e estrutura, as minúsculas moléculas presentes na atmosfera difundem melhor as ondas com os menores comprimentos de onda, tais como o azul e violeta.
Durante todo o dia a luz azul (menor comprimento de onda) é dispersa cerca de dez vezes mais que luz vermelha (maior comprimento de onda).
A luz azul tem uma frequência que é muito próximo da frequência de ressonância dos átomos, ao contrário da luz vermelha, Por isso, a luz azul movimenta os elétrons nas camadas atômicas da molécula com muito mais facilidade que a vermelha. Isso provoca um ligeiro atraso na luz azul que é re-emitida em todas as direções.
Quando o céu está com cerração, névoa ou poluição, há partículas de tamanho grande que dispersam igualmente todos os comprimentos de ondas, logo o céu tende a ficar mais branco, devido à associação das cores monocromáticas.
No vácuo, existente fora das proximidades do planeta Terra, onde não há atmosfera, os raios do sol não são dispersos, logo eles percorrem uma linha reta do sol até o observador, por isso, os astronautas veem o céu escuro, como se fosse sempre noite.

Por que o pôr do sol e a alvorada são vermelhos? 

Quando o sol está no horizonte, a luz leva um caminho muito maior através da atmosfera para chegar aos nossos olhos do que quando está sobre nossas cabeças. A luz azul nesse caminho foi dispersa quase integralmente, a atmosfera atua como um filtro, e muito pouca luz azul chega até nossos olhos, enquanto que a luz vermelha que é apenas transmitida nos alcança mais facilmente.
Além disso, o vermelho e o laranja tornam-se muito mais vívidos no crepúsculo quando há poeira ou fumaça no ar. Isso ocorre porque as partículas de poeira são bem maiores que as outras, presentes na atmosfera, provocando dispersão com a luz de comprimento de onda próximos, no caso o vermelho e laranja.
 
Por que as nuvens são brancas? 

Nas nuvens existem gotículas de tamanhos muito maiores que o comprimento de ondas da luz ocorrendo dispersão generalizada em todo o espectro visível e iguais quantidades de azul, verde e vermelho unem-se fazendo com que a luz branca seja dispersa.

quarta-feira, 10 de agosto de 2011

Como funcionam os refrigeradores?


Há evidências de que os seres humanos, desde os primórdios, notaram que o simples resfriamento de alimentos era capaz de conservá-los por um tempo maior. Muito provavelmente, as apropriações de territórios foram responsáveis pela disseminação deste conhecimento às civilizações.
No entanto, somente no século XIX é que Jacob Perkins, um inventor inglês, desenvolveu um compressor capaz de solidificar a água, produzindo gelo artificialmente. E, obviamente, esta descoberta possibilitou que algumas indústrias, como as cervejarias, por exemplo, prosperassem. Além disso, o ramo comercial também foi bastante favorecido, uma vez que tornou-se possível enviar os produtos para vários países distantes.
Já no início do século XX, Willis Carrier, americano, instalou em uma gráfica de Nova York o primeiro aparelho de ar-condicionado, o qual era capaz de controlar a umidade do ambiente e de resfriá-lo.
Os primeiros refrigeradores domésticos (mais conhecidos como geladeiras) surgiram, nos Estados Unidos, no início da década de 1920, tornando-se populares muito rapidamente. Hoje em dia, no Brasil, estima-se que um percentual superior a 80% das residências tenham uma geladeira.

Componentes
Basicamente, uma geladeira é composta dos seguintes elementos:
  • Fluido refrigerante: o qual deve possuir baixa pressão de vaporização e alta pressão de condensação, como é o caso do freon - fluido mais utilizado para refrigeração.
  • Compressor: funciona como uma bomba de sucção que retira o fluido do ramo da tubulação que o antecede (reduzindo a pressão) e injeta este fluido no ramo da tubulação que o sucede (aumentando a pressão).
  • Condensador: trata-se de uma serpentina externa, localizada na parte de trás da geladeira, na qual o vapor se liquefaz, e que é responsável por liberar calor para o ambiente.
  • Tubo capilar: é responsável por diminuir a pressão do vapor do fluido.
  • Evaporador: é composto por um tubo em forma de serpentina acoplado ao congelador. Para passar ao estado gasoso, o fluido absorve energia na forma de calor do congelador e, ao abandonar o evaporador, chega ao compressor, recomeçando o ciclo.
  • Congelador: localiza-se na parte superior do refrigerador para facilitar a formação de correntes de convecção internas, permitindo a mistura do ar à baixa temperatura do congelador e de sua vizinhança com o ar à temperatura mais elevada das outras partes.

Funcionamento
A pressão do ar no interior do refrigerador é uniforme e, em virtude disso, o ar do congelador e dos arredores, que está a temperaturas mais baixas, é mais denso que o ar das outras partes. Assim, o fato desta massa de ar ser mais densa faz que ela desça, empurrando o ar das outras partes para cima.
Além disso, não é à toa que as prateleiras das geladeiras são confeccionadas na forma de grade: isso é feito com o intuito de facilitar as correntes de convecção.
No interior do refrigerador há um botão que permite regular a temperatura na qual se deseja que o sistema opere. Um termostato é responsável por interromper o circuito de alimentação do motor que faz funcionar o compressor, quando a temperatura na qual o sistema foi programado para operar é atingida.
Uma vez desligado o circuito, a temperatura do interior do refrigerador passa a aumentar, por efeito da absorção de energia na forma de calor do ambiente. A partir de um certo valor de temperatura, o termostato reconecta o circuito elétrico de alimentação do motor e um novo ciclo de refrigeração se inicia. Desta forma, o termostato permite manter uma temperatura praticamente constante no interior do refrigerador.
Na ótica da termodinâmica, um refrigerador é uma máquina térmica que opera em ciclos. Agora, nos concentraremos nas transformações termodinâmicas que ocorrem durante o funcionamento dos refrigeradores.
Processos termodinâmicos
Em poucas palavras, o funcionamento das populares geladeiras baseia-se em um processo de transferência de calor de uma fonte fria para uma fonte quente. No entanto, este processo não é espontâneo: faz-se necessária uma quantidade de energia externa, que ocorre na forma de trabalho, para que esta transferência seja possível. Só para explicitar, a fonte fria é o congelador e a fonte quente é o condensador (também chamado de radiador).
Analisaremos, a partir de agora, os ciclos termodinâmicos que ocorrem durante o funcionamento de um refrigerador. Para isso, consideremos a figura abaixo.
Este gráfico representa o ciclo envolvido por meio de um diagrama PV, dividido em cinco processos. Obviamente, trata-se da idealização dos ciclos, uma vez que não são previstas, por exemplo, possíveis perdas de energia.
Vamos analisar o que ocorre em cada uma das etapas do ciclo.
* 1 - 2: compressão adiabática
Ao aumentar a pressão do fluido, o compressor faz o volume reduzir. Uma vez que este processo ocorre muito rapidamente, de forma que as perdas de energia são ínfimas, podemos considerá-lo como um processo adiabático. O trabalho que o compressor realiza é responsável pelo aumento da energia interna do fluido e, consequentemente, pela elevação de sua temperatura.
* 2 - 3: resfriamento isobárico
O fluido começa a perder energia sob a forma de calor e, como o compressor mantém alta e constante a pressão deste, o volume e a temperatura diminuem.
* 3 - 4: condensação
 Ainda no condensador e sob alta pressão, o fluido perde mais um pouco de energia sob a forma de calor. Por conta disso, o volume e a temperatura do fluido diminuem ainda mais e ele passa do estado gasoso para o líquido. É importante ressaltar que, até aqui, o fluido se encontrava no estado gasoso.
* 4 - 5: expansão adiabática
Sob alta pressão, o fluido atravessa o tubo capilar e, na saída do tubo, ele se expande. Visto que esta expansão ocorre muito depressa, de forma que o fluido troca uma pequena quantidade de energia (sob forma de calor) com a vizinhança, podemos considerar o processo como adiabático. Entretanto, a pressão e a temperatura do fluido diminuem, e parte dele se vaporiza. Assim, na saída do tubo, o fluido se apresenta como gotículas de líquido suspensas em vapor à baixa pressão. Nota: a baixa pressão do tubo capilar é um efeito do funcionamento do compressor, o qual retira fluido no estado gasoso desta parte do circuito para comprimi-lo no condensador.
* 5 - 1: vaporização isobárica
No evaporador, sob pressão baixa e constante, as gotículas restantes são vaporizadas, absorvendo energia (na forma de calor) do congelador. Ao sair do evaporador, o fluido está totalmente no estado gasoso e à pressão baixa, encaminhando-se para o compressor e repetindo o ciclo.

quinta-feira, 28 de julho de 2011

As Aventuras de Anselmo curioso

As Aventuras de Anselmo Curioso é uma série de livros do francês Jean-Pierre Petit, com bandas desenhadas em português, queexplicam a teoria da relatividade, osburacos negros, o Big Bang, a história do cosmos, a energia e a luz, entre outros temas. Estes livros são grátis, e  com o apoio da organização Savoir sans Frontières(Conhecimento sem Fronteiras).






21 - Mecavoo
22 - A Volta ao Mundo em 80 Minutos



Bem, temos alguns links que estam fora do ar.

quarta-feira, 27 de julho de 2011

Como funcionam as redes Wi-Fi?


Frequentemente nos deparamos com pessoas em aeroportos, bibliotecas, restaurantes, etc. utilizando dispositivos eletrônicos, como, por exemplo,notebooks, para acessarem a internet sem utilizar cabos para a conexão.
A chamada rede Wi-Fi é uma rede sem fio (também chamada de wireless) na qual podemos ter acesso à internet apenas por sinal de ondas de rádio, assim como as televisões e os celulares, não sendo necessária a utilização de fios conectores.


As ondas de rádio são ondas eletromagnéticas (formadas pela combinação dos campos elétrico e magnético que se propagam no espaço perpendicularmente transportando energia) utilizadas pelas emissoras de rádio.
Basicamente, nos locais onde há sistemas que fazem uso de ondas de rádio, um circuito elétrico é o responsável por provocar a oscilação de elétrons na antena emissora. Estes elétrons são acelerados e, em virtude disso, emitem ondas de rádio, as quais transportam as informações até uma antena receptora.
As redes Wi-Fi, utilizadas para fornecer acesso sem fio à internet, operam de forma análoga: um adaptador (sem fio) para computadores capta as informações e as traduz na forma de sinais de rádio, as quais são transmitidos com o auxílio de uma antena.
O roteador (também sem fio), cuja função é realizar a distribuição dos sinais da rede, além de "escolher" o melhor caminho para o envio de um conjunto de dados, é quem recebe o sinal e o decodifica. É ele quem envia as informações para a internet usando uma conexão (com fios), a Ethernet, responsável pela interconexão de redes locais.
É válido salientar que o processo inverso também pode ocorrer: o roteador pode receber as informações da internet, traduzi-las em sinais de rádio e enviá-las para o adaptador

Supercondutor gera voltagem transversal sem campo magnético


Marcelo Pellegrini - Agência USP - 16/02/2011
Supercondutores granulares
Estudo desenvolvido na Escola de Engenharia de Lorena, ligada à USP, verificou que supercondutores granulares apresentam fenômeno similar ao Efeito Hall, porém sem a aplicação de campo magnético.
O Efeito Hall é um comportamento comum aos materiais condutores e consiste num desvio da corrente elétrica quando submetida ao campo magnético.
A partir disso, percebeu-se que, ao contrário do que se esperava, os supercondutores granulares podem apresentar desvios de corrente elétrica e, consequentemente, tensões (diferenças de potencial) transversais, mesmo diante da inexistência de campos magnéticos.
"Este estudo básico constatou um comportamento incomum que poderá abrir caminho para outros tipos de pesquisas", afirma o pesquisador Mário Sérgio da Luz, responsável pelo estudo.
Supercondutores
Os supercondutores, como o próprio nome já diz, são materiais que conduzem corrente elétrica com resistência nula.
Durante o processo de transporte da usina geradora de eletricidade até as residências, a energia elétrica é transportada por meio de fios que, por possuírem uma resistência alta, transformam eletricidade em calor.
A energia transformada em calor se dissipará no ambiente, resultando na perda de energia elétrica durante o percurso de transmissão.
Com isso, surgiram os supercondutores que, quando mantidos em temperaturas muito baixas, são capazes de conduzir corrente elétrica com perdas de energia extremamente baixas.
Aplicações dos supercondutores
Atualmente, existem diversos tipos de supercondutores, com várias aplicações.
Entre elas pode-se destacar o uso de supercondutores em magnetos, que compõem os aceleradores de partículas, e em fios supercondutores utilizados em computadores, permitindo que os chips sejam cada vez menores e mais rápidos no processamento de dados.
Além disso, os supercondutores também agem sob diversos componentes eletrônicos - que funcionam à base de eletricidade, diminuindo o seu tamanho e o gasto de energia dos mesmos - e em ímãs como os utilizados nos trens de alta velocidade, conhecidos como trens magneticamente levitados